ResNet1 [딥러닝] ResNet 모델의 개요 및 특징 개요 앞서 소개한 VGG, AlexNet에서 층이 깊어질수록 모델이 좋아진다는 것이 증명되었습니다. 하지만 무작정 계속 늘리면 늘릴수록 좋을까요?? 그렇지 만은 않습니다. 위 그림을 보면 56층을 갖는 구조가 20층을 갖는 모델보다 더 에러가 많이 나왔습니다. ResNet저자들은 깊이를 늘릴 방법을 연구했고, input을 x라고 하고, 최적 함수를 H(x)라고 했을 때 H(x) = x 가 나오는 Convolution Layer가 identity 역할을 하게 생성하면 층을 계속 늘려도 성능이 저하되지는 않을 것이라고 추측하였습니다. 위의 그림을 보면 Identity block을 이렇게 구성하면 될 것 같은데 ReLU와 같은 비선형 Layer로 인하여 identity mapping이 어렵습니다. 그래서 나온.. 2022. 3. 20. 이전 1 다음